
На майских в Telegram — больше читателей и отклика
Планируйте посты со скидкой 3,5% по промокоду HAPPYMAY с 28 апреля по 15 мая
Получить скидку
Купить рекламу в этом канале
Формат:
keyboard_arrow_down
- 1/24
- 2/48
- Нативный
- Репост
1 час в топе / 24 часа в ленте
Количество:
%keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Стоимость публикации:
local_activity
69 930.00₽69 930.00₽local_mall
0.0%
Осталось по этой цене:0
Последние посты канала
imageИзображение не доступно для предпросмотра
Топ-топ-топ топает кибермалыш
Знакомьтесь: это робот Топа от Центра робототехники Сбера, которого они показали на ROS Meetup 2025 в эти выходные. Участники запустили его сами и Топа гордо оттопал по подиуму🏃♂️
Мероприятие, кстати, собрало в этом году рекордных 300 исследователей и инженеров, которые пришли в московскую штаб-квартиру Сбера послушать или рассказать доклады про ИИ и Robot Operating System (ROS). Был также нетворкинг и демки других роботов.
Ждем следующего года, чтобы пойти посмотреть на то, какого робота соберут на ROS Meetup 2026
Знакомьтесь: это робот Топа от Центра робототехники Сбера, которого они показали на ROS Meetup 2025 в эти выходные. Участники запустили его сами и Топа гордо оттопал по подиуму
Мероприятие, кстати, собрало в этом году рекордных 300 исследователей и инженеров, которые пришли в московскую штаб-квартиру Сбера послушать или рассказать доклады про ИИ и Robot Operating System (ROS). Был также нетворкинг и демки других роботов.
Ждем следующего года, чтобы пойти посмотреть на то, какого робота соберут на ROS Meetup 2026
1200
16:14
28.04.2025
imageИзображение не доступно для предпросмотра
В Твиттере обнаружили место обитания моделей Meta нового поколения
6800
09:05
28.04.2025
imageИзображение не доступно для предпросмотра
Учите машины учиться? Тогда вам на IML
🗓️16–17 мая
📍 Питер + онлайн
IML — конференция для всех, кто использует ML в проектах. Здесь собираются ML-инженеры, дата-сайентисты, исследователи, аналитики и разработчики.
В этот раз вас ждет двухдневный технологический хардкор об NLP, RecSys, MLOps и Computer Vision. С докладами выступят спикеры из Яндекса, Сбера, Т-Банка, Точки и других известных компаний.
А вот что с билетами:
→ дают скидку 15% на билет для частных лиц по промокоду
→ есть билет для студентов и преподавателей вузов — в два раза дешевле персонального
→ можно попросить руководство приобрести корпоративный билет
Бонус: в соседних залах пройдет Python-конференция PiterPy. Участники IML смогут послушать доклады PiterPy бесплатно.
За подробностями и билетами
🗓️16–17 мая
📍 Питер + онлайн
IML — конференция для всех, кто использует ML в проектах. Здесь собираются ML-инженеры, дата-сайентисты, исследователи, аналитики и разработчики.
В этот раз вас ждет двухдневный технологический хардкор об NLP, RecSys, MLOps и Computer Vision. С докладами выступят спикеры из Яндекса, Сбера, Т-Банка, Точки и других известных компаний.
А вот что с билетами:
→ дают скидку 15% на билет для частных лиц по промокоду
DATASECRETS
→ есть билет для студентов и преподавателей вузов — в два раза дешевле персонального
→ можно попросить руководство приобрести корпоративный билет
Бонус: в соседних залах пройдет Python-конференция PiterPy. Участники IML смогут послушать доклады PiterPy бесплатно.
За подробностями и билетами
4800
08:02
28.04.2025
imageИзображение не доступно для предпросмотра
А вы тоже заметили, что после последних обновлений 4o превратился в ванильный раф с сиропом?
Если вы думали, что вам показалось, то нет. Даже Альтман сегодня в твиттере признался, что «что-то мы переборщили с лестью» и пообещал, что на этой неделе все исправят. Пока наслаждаемся комплиментами😛
Если вы думали, что вам показалось, то нет. Даже Альтман сегодня в твиттере признался, что «что-то мы переборщили с лестью» и пообещал, что на этой неделе все исправят. Пока наслаждаемся комплиментами
8900
07:08
28.04.2025
imageИзображение не доступно для предпросмотра
В китайские соцсети якобы утекла информация о предстоящем релизе DeepSeek R2
На платформе Jiuyan Gongshe, которая предназначена для обсуждения фондовых рынков и шеринга аналитических материалов, некий пользователь опубликовал статью с инсайдами про R2. Что говорит:
➖ Будет новая архитектура Hybrid MoE 3.0. Всего в модели 1,2 триллиона параметров, но фактически единовременно активироваться будут около 78 миллиардов. По тестам (опять же, якобы) Alibaba Cloud, стоимость обработки одного токена на длинных контекстах будет на 97,3% ниже по сравнению с GPT-4 Turbo.
➖ Обучают на Huawei Ascend 910B и Nvidia H800. Фактическая производительность на FP16 составила 512 PetaFLOPS. Это примерно 91% эффективности аналогичных кластеров на чипах Nvidia A100, то есть довольно амбициозно.
➖ Релиз – в мае.
Ознакомились, но относимся с осторожностью
На платформе Jiuyan Gongshe, которая предназначена для обсуждения фондовых рынков и шеринга аналитических материалов, некий пользователь опубликовал статью с инсайдами про R2. Что говорит:
Ознакомились, но относимся с осторожностью
7800
18:04
26.04.2025
imageИзображение не доступно для предпросмотра
Paper2Code: исследователи из корейского технологического института сделали мульти-агентный фрейморк для автоматической генерации кода по статьям
Боль каждого рисерчера – это статьи, к которым нет кода. Чтобы воспроизвести результат, нужно потратить пол жизни, и то – успех не гарантирован. А код авторы публикуют не так уж и часто. На примере NeurIPS, ICML и ICLR 2024: только 21.2% принятых работ имеют открытые репы.
Здесь авторы предлагают PaperCoder. Это мульти-агентная система, в которой процесс генерации репозитория разбит на три этапа:
1. Планирование. Составляется конспект статьи, UML-диаграммы классов + список файлов. Тут же создается config.yaml с гиперпараметрами и выстраивается план последовательности генерации.
2. Анализ. Здесь для каждого файла из составленного списка формируется file-level analysis — подробное описание целей, входов/выходов, взаимодействий и каких-то специфичных требований, если есть.
3. Ну и сама генерация на основании статьи, фазы планирования и анализа. Бонусом из первых двух пунктов получаем супер-подробную доку.
На каждом шаге работает отдельный агент. Это, по идее, могут быть разные LLM, но здесь по умолчанию на всех шагах стоит o3-mini-high (кроме валидации, там GPT-4o).
Тестировали на работах с тех же ICML/NeurIPS/ICLR 2024. Процент полностью успешной репликации – около 44% против 10-15 у базовых агентов. Если анализировать вручную, то в среднем для успешного запуска нужно менять всего 0.48 % строк. А еще PaperCoder давали потрогать исследователям, и в 85% случаев те сказали, что это лучше, чем писать с нуля, даже если нужно что-то дебажить.
Ирония только в том, что к статье Paper2Code... не выложили код. Но, вроде, обещают "скоро"
Боль каждого рисерчера – это статьи, к которым нет кода. Чтобы воспроизвести результат, нужно потратить пол жизни, и то – успех не гарантирован. А код авторы публикуют не так уж и часто. На примере NeurIPS, ICML и ICLR 2024: только 21.2% принятых работ имеют открытые репы.
Здесь авторы предлагают PaperCoder. Это мульти-агентная система, в которой процесс генерации репозитория разбит на три этапа:
1. Планирование. Составляется конспект статьи, UML-диаграммы классов + список файлов. Тут же создается config.yaml с гиперпараметрами и выстраивается план последовательности генерации.
2. Анализ. Здесь для каждого файла из составленного списка формируется file-level analysis — подробное описание целей, входов/выходов, взаимодействий и каких-то специфичных требований, если есть.
3. Ну и сама генерация на основании статьи, фазы планирования и анализа. Бонусом из первых двух пунктов получаем супер-подробную доку.
На каждом шаге работает отдельный агент. Это, по идее, могут быть разные LLM, но здесь по умолчанию на всех шагах стоит o3-mini-high (кроме валидации, там GPT-4o).
Тестировали на работах с тех же ICML/NeurIPS/ICLR 2024. Процент полностью успешной репликации – около 44% против 10-15 у базовых агентов. Если анализировать вручную, то в среднем для успешного запуска нужно менять всего 0.48 % строк. А еще PaperCoder давали потрогать исследователям, и в 85% случаев те сказали, что это лучше, чем писать с нуля, даже если нужно что-то дебажить.
Ирония только в том, что к статье Paper2Code... не выложили код. Но, вроде, обещают "скоро"
12800
09:16
26.04.2025
Еще одна крутая новость для студентов и молодых исследователей: есть еще 4 дня, чтобы подать заявку на летнюю школу по искусственному интеллекту «Лето с AIRI 2025» ⚡️⚡️⚡️
Если вы ещё не слышали, рассказываем: это исследовательская школа, где с 30 июня по 10 июля в Томске вас ждет работа с ведущими экспертами по искусственному интеллекту. В программе — лекции, семинары, практические задания, постерная сессия и много возможностей для прокачки навыков и нетворкинга.
Обучение бесплатное. Организаторы также покрывают проживание и питание — нужно только приехать в Томск. Вас ждет погружение в реальную научную работу и сильная исследовательская атмосфера.
Подавайте заявку на сайте до 23:59 29 апреля 2025 года. Если хотите провести лето с пользой и прокачаться в ИИ, не упустите шанс!
Если вы ещё не слышали, рассказываем: это исследовательская школа, где с 30 июня по 10 июля в Томске вас ждет работа с ведущими экспертами по искусственному интеллекту. В программе — лекции, семинары, практические задания, постерная сессия и много возможностей для прокачки навыков и нетворкинга.
Обучение бесплатное. Организаторы также покрывают проживание и питание — нужно только приехать в Томск. Вас ждет погружение в реальную научную работу и сильная исследовательская атмосфера.
Подавайте заявку на сайте до 23:59 29 апреля 2025 года. Если хотите провести лето с пользой и прокачаться в ИИ, не упустите шанс!
11700
08:01
26.04.2025
Одну из ключевых исследователей OpenAI высылают из Америки
И нет, она не сделала ничего плохого. Просто она гражданка Канады и ей отказали в грин карте. Девушку зовут Кай Чен, она 12 лет прожила в Америке и много лет работала в OpenAI.
Ее коллеги пишут, что она играла ключевую роль в релизе GPT-4.5. За нее даже заступился сам Ноам Браун, назвав Кай одной из лучших ученых, с кем ему приходилось работать. Но решение не отменить, и скоро исследовательница вынуждена будет покинуть страну. Вот такая история.
US: мы хотим быть лидерами в ИИ, вот 500 миллиардов долларов
Также US:
И нет, она не сделала ничего плохого. Просто она гражданка Канады и ей отказали в грин карте. Девушку зовут Кай Чен, она 12 лет прожила в Америке и много лет работала в OpenAI.
Ее коллеги пишут, что она играла ключевую роль в релизе GPT-4.5. За нее даже заступился сам Ноам Браун, назвав Кай одной из лучших ученых, с кем ему приходилось работать. Но решение не отменить, и скоро исследовательница вынуждена будет покинуть страну. Вот такая история.
US: мы хотим быть лидерами в ИИ, вот 500 миллиардов долларов
Также US:
12200
18:36
25.04.2025
Дайджест первого дня ICLR 2025 от делегации Яндекса
✔️ Computer Vision: прорывы в генерации и анализе изображений.
Исследователи представили многомодальную модель Eagle с множеством энкодеров, теоретическое обоснование ограничений диффузионных моделей с тяжёлыми хвостами, метод FreCaS для генерации изображений высокого разрешения и фреймворк FORTE для автоматического обнаружения аутлайеров в данных.
✔️ NLP: оптимизация предпочтений и эффективный инференс.
Предложены новые подходы к DPO с учётом временного затухания для первых токенов, прогрессивная смешанная точность для эффективного инференса LLM, улучшенные метрики для моделей с длинным контекстом и обучение реворд-моделей для предотвращения reward hacking.
✔️ Speech: расширенные бенчмарки и новые токенизации.
Представлен бенчмарк Dynamic-SUPERB Phase-2 со 180 задачами для речевых моделей, предложена токенизация на уровне слогов в SyllableLM, а также доказаны математические гарантии для алгоритма Flow Matching, показывающие одинаковый порядок сходимости с классическими диффузионными процессами.
✔️ RecSys: инновационные архитектуры для рекомендаций.
Разработана архитектура ContextGNN, объединяющая попарный скор и двухбашенный подход, исследовано применение диффузионных моделей в рекомендациях от TikTok, предложены новые методы персонализации для диалоговых агентов и эффективная дистилляция LLM для секвенциальных рекомендаций.
@ai_machinelearning_big_data
#news #AI #ML #LLM
Исследователи представили многомодальную модель Eagle с множеством энкодеров, теоретическое обоснование ограничений диффузионных моделей с тяжёлыми хвостами, метод FreCaS для генерации изображений высокого разрешения и фреймворк FORTE для автоматического обнаружения аутлайеров в данных.
Предложены новые подходы к DPO с учётом временного затухания для первых токенов, прогрессивная смешанная точность для эффективного инференса LLM, улучшенные метрики для моделей с длинным контекстом и обучение реворд-моделей для предотвращения reward hacking.
Представлен бенчмарк Dynamic-SUPERB Phase-2 со 180 задачами для речевых моделей, предложена токенизация на уровне слогов в SyllableLM, а также доказаны математические гарантии для алгоритма Flow Matching, показывающие одинаковый порядок сходимости с классическими диффузионными процессами.
Разработана архитектура ContextGNN, объединяющая попарный скор и двухбашенный подход, исследовано применение диффузионных моделей в рекомендациях от TikTok, предложены новые методы персонализации для диалоговых агентов и эффективная дистилляция LLM для секвенциальных рекомендаций.
@ai_machinelearning_big_data
#news #AI #ML #LLM
10500
17:15
25.04.2025
МТС Web Services получила две награды на VI российском саммите и премии по цифровой трансформации организаций CDO/CDTO Summit & Awards 2025.
Гран-при в номинации «Digital-платформа года» получила платформа MWS Octapi. Это инновационное решение позволяет бесшовно интегрировать сервисы в экосистему, обеспечивая их эффективное взаимодействие и повышая надежность. Octapi упрощает подключение новых технологий, минимизируя зависимость от разработчиков и ускоряя внедрение сервисов. Платформа способна поддерживать высокие нагрузки и позволяет настраивать интеграции без участия разработчиков.
Павел Воронин, генеральный директор МТС Web Services, стал лауреатом премии CDO/CDTO, войдя в тройку лучших СЕО 2025 года в номинации «СЕО года цифровой компании».
Гран-при в номинации «Digital-платформа года» получила платформа MWS Octapi. Это инновационное решение позволяет бесшовно интегрировать сервисы в экосистему, обеспечивая их эффективное взаимодействие и повышая надежность. Octapi упрощает подключение новых технологий, минимизируя зависимость от разработчиков и ускоряя внедрение сервисов. Платформа способна поддерживать высокие нагрузки и позволяет настраивать интеграции без участия разработчиков.
Павел Воронин, генеральный директор МТС Web Services, стал лауреатом премии CDO/CDTO, войдя в тройку лучших СЕО 2025 года в номинации «СЕО года цифровой компании».
11300
16:18
25.04.2025
close
С этим каналом часто покупают
Отзывы канала
keyboard_arrow_down
- Добавлен: Сначала новые
- Добавлен: Сначала старые
- Оценка: По убыванию
- Оценка: По возрастанию
5.0
5 отзыва за 6 мес.
Превосходно (100%) За последние 6 мес
m
**cromarketing@****.ru
на сервисе с августа 2023
31.03.202510:36
5
Оперативное размещение
Показать еще
Лучшие в тематике
Новинки в тематике
Статистика канала
Рейтинг
160.2
Оценка отзывов
5.0
Выполнено заявок
163
Подписчики:
57.4K
Просмотры на пост:
lock_outline
ER:
15.1%
Публикаций в день:
6.0
CPV
lock_outlineВыбрано
0
каналов на сумму:0.00₽
Подписчики:
0
Просмотры:
lock_outline
Перейти в корзинуКупить за:0.00₽
Комментарий