
🌸 Майская распродажа
Скидки до 70% в каталоге + дополнительно 3,5% по промокоду 75D80F4B
В каталог
Купить рекламу в этом канале
Формат:
keyboard_arrow_down
- 1/24
- 2/48
- Нативный
- Репост
1 час в топе / 24 часа в ленте
Количество:
%keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Стоимость публикации:
local_activity
69 930.00₽69 930.00₽local_mall
0.0%
Осталось по этой цене:0
Последние посты канала
play_circleВидео недоступно для предпросмотра
Случился коллаб года: Kaggle объединились с HuggingFace и теперь все модели, доступные на HF, можно моментально напрямую запускать в Kaggle Notebooks
Этим можно пользоваться и на одной платформе, и на другой. Например, если вы перешли в карточку модели на HF, то теперь там можно ткнуть на “Use this model” -> “Kaggle”, и сразу откроется ноутбук с подгруженной моделью.
То же самое можно сделать с вкладки HuggingFace на Kaggle по кнопке "Code". Также там будут видны все открытые относящиеся к этой модели ноутбуки других пользователей.
Обещают, что скоро будут и другие интересные фичи
Этим можно пользоваться и на одной платформе, и на другой. Например, если вы перешли в карточку модели на HF, то теперь там можно ткнуть на “Use this model” -> “Kaggle”, и сразу откроется ноутбук с подгруженной моделью.
То же самое можно сделать с вкладки HuggingFace на Kaggle по кнопке "Code". Также там будут видны все открытые относящиеся к этой модели ноутбуки других пользователей.
Обещают, что скоро будут и другие интересные фичи
3800
09:31
15.05.2025
imageИзображение не доступно для предпросмотра
Google анонсировали кодинг-агента AlphaEvolve, предназначенного специально для разработки сложных алгоритмов
Инженеры утверждают, что на тестах этой системе удалось:
– Идентифицировать несколько абсолютно новых алгоритмов для эффективного умножения матриц.
– В 75% найти лучшие известные на данный момент решения открытых мировых задач по математике, и в 20% улучшить ранее известные решения (то есть открыть новые подходы).
И это не все. Внутри экосистемы Google AlphaEvolve работает уже год. За это время с его помощью они успели оптимизировать несколько датацентров, обучение и инференс моделей и даже использовали ассистента для проектирования железа.
Под капотом цикл: обработка контекста -> генерация идей и решений -> оценка и скоринг этих решений -> добавление лучших решений в контекст для дальнейшего улучшения -> и с начала.
Потрогать пока, конечно, не дают, поэтому будем ждать
deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
Инженеры утверждают, что на тестах этой системе удалось:
– Идентифицировать несколько абсолютно новых алгоритмов для эффективного умножения матриц.
– В 75% найти лучшие известные на данный момент решения открытых мировых задач по математике, и в 20% улучшить ранее известные решения (то есть открыть новые подходы).
И это не все. Внутри экосистемы Google AlphaEvolve работает уже год. За это время с его помощью они успели оптимизировать несколько датацентров, обучение и инференс моделей и даже использовали ассистента для проектирования железа.
Под капотом цикл: обработка контекста -> генерация идей и решений -> оценка и скоринг этих решений -> добавление лучших решений в контекст для дальнейшего улучшения -> и с начала.
Потрогать пока, конечно, не дают, поэтому будем ждать
deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
1500
07:58
15.05.2025
imageИзображение не доступно для предпросмотра
GPT-4.1 добавили в ChatGPT
Напоминаем, что это лучшая не-ризонинг модель стартапа для программирования, она обгоняет даже o1-high. Плюс контекст 1 миллион токенов.
Ранее модель была доступна только в API и через сторонних вендоров типа Cursor. Но, видимо, спрос был настолько велик, что ее добавили и в чат.
🍯 Модель уже раскатали на Plus, Pro и Team, а мини-версия – GPT-4.1 mini – скоро заменит GPT-4o mini для всех, включая бесплатных юзеров.
Напоминаем, что это лучшая не-ризонинг модель стартапа для программирования, она обгоняет даже o1-high. Плюс контекст 1 миллион токенов.
Ранее модель была доступна только в API и через сторонних вендоров типа Cursor. Но, видимо, спрос был настолько велик, что ее добавили и в чат.
🍯 Модель уже раскатали на Plus, Pro и Team, а мини-версия – GPT-4.1 mini – скоро заменит GPT-4o mini для всех, включая бесплатных юзеров.
17100
18:38
14.05.2025
imageИзображение не доступно для предпросмотра
Радостные новости: Anthropic все-таки выпустит новый Claude Opus
В прошлых релизах приставка Opus означала самую большую модель, а Sonnet – среднюю. Но начиная с версии 3.5 Opus не выходил – был только Sonnet и Haiku, а из ризонинг моделей вообще один Sonnet.
Но The Information только что написали, что линейка Opus может возродиться, и новые ризонинг модели Opus и Sonnet выйдут уже в ближайшие недели.
Более того, это будут какие-то необычные ризонинг-модели: в них будет режим «экстремальных рассуждений». Модель будет работать в цикле: думать -> обращаться к инструментам (интерпретатор или браузер) -> снова думать, анализируя результаты -> снова обращаться к инструментам и тд. В общем, что-то ближе к агентам.
www.theinformation.com/articles/anthropics-upcoming-models-will-think-think
В прошлых релизах приставка Opus означала самую большую модель, а Sonnet – среднюю. Но начиная с версии 3.5 Opus не выходил – был только Sonnet и Haiku, а из ризонинг моделей вообще один Sonnet.
Но The Information только что написали, что линейка Opus может возродиться, и новые ризонинг модели Opus и Sonnet выйдут уже в ближайшие недели.
Более того, это будут какие-то необычные ризонинг-модели: в них будет режим «экстремальных рассуждений». Модель будет работать в цикле: думать -> обращаться к инструментам (интерпретатор или браузер) -> снова думать, анализируя результаты -> снова обращаться к инструментам и тд. В общем, что-то ближе к агентам.
www.theinformation.com/articles/anthropics-upcoming-models-will-think-think
12000
15:03
14.05.2025
play_circleВидео недоступно для предпросмотра
7–8 июня проводим Weekend Offer Analytics
Устроиться в Яндекс за выходные — реально. Ищем крутых аналитиков с опытом работы от 3 лет на Python, готовых работать в офисном или гибридном режиме.
Подавайте заявку до 3 июня — и всего за 2 дня пройдите технические собеседования. После сможете пообщаться с двенадцатью нанимающими командами и выбрать ту, которая покажется самой интересной. Если всё сложится хорошо, сразу же пришлём вам офер.
Узнать подробности и зарегистрироваться.
Реклама. ООО "Яндекс". ИНН 7736207543
Устроиться в Яндекс за выходные — реально. Ищем крутых аналитиков с опытом работы от 3 лет на Python, готовых работать в офисном или гибридном режиме.
Подавайте заявку до 3 июня — и всего за 2 дня пройдите технические собеседования. После сможете пообщаться с двенадцатью нанимающими командами и выбрать ту, которая покажется самой интересной. Если всё сложится хорошо, сразу же пришлём вам офер.
Узнать подробности и зарегистрироваться.
Реклама. ООО "Яндекс". ИНН 7736207543
11300
14:02
14.05.2025
imageИзображение не доступно для предпросмотра
В Meta разработали оптимизационный фреймворк CATransformers, который позволяет минимизировать углеродный след от обучения и инференса
Индустрия постепенно вспоминает про экологию. Сегодня есть уже много подходов, которые оптимизируют энергопотребление железа, и вот сегодня Meta выпустили первый в своем роде конструктор, который помимо этого минимизирует еще и выбросы углерода.
Работает так -> Вы запускаете CATransformers перед обучением, и он подбирает вам оптимальные или квази-оптимальные параметры железа и модели относительно четырех параметров: точность, скорость, энергопотребление и углеродный след.
Под капотом это похоже на гридсерч. Алгоритм перебирает параметры и для каждого набора быстренько обучает на эмулированном железе proxy-модель. На таких моделях замеряются необходимые метрики, а итоговые гиперпараметры выбираются с помощью байесовской оптимизации.
Приятная работа
arxiv.org/abs/2505.01386
Индустрия постепенно вспоминает про экологию. Сегодня есть уже много подходов, которые оптимизируют энергопотребление железа, и вот сегодня Meta выпустили первый в своем роде конструктор, который помимо этого минимизирует еще и выбросы углерода.
Работает так -> Вы запускаете CATransformers перед обучением, и он подбирает вам оптимальные или квази-оптимальные параметры железа и модели относительно четырех параметров: точность, скорость, энергопотребление и углеродный след.
Под капотом это похоже на гридсерч. Алгоритм перебирает параметры и для каждого набора быстренько обучает на эмулированном железе proxy-модель. На таких моделях замеряются необходимые метрики, а итоговые гиперпараметры выбираются с помощью байесовской оптимизации.
Приятная работа
arxiv.org/abs/2505.01386
11600
11:16
14.05.2025
play_circleВидео недоступно для предпросмотра
Робототехники Tesla показали новое демо с танцующим Optimus
На этот раз робот (вроде как) не управляется человеком, и, более того – утверждается, что инженерам удалось сделать sim2real в zero-shot, то есть с нулевым дообучением.
Объясняем, что это значит. Optimus, как и почти все современные роботы, обучается в симуляции, то есть в среде, которая моделирует физику нашего мира. В таких симуляциях сотни часов обучающих данных можно сжимать в часы, и тем самым ускорять обучение в тысячи раз.
Но есть нюанс. При переходе из симуляции в реальность роботы обычно теряют часть способностей, потому что реальная физика все-таки отличается от смоделированной. Это обычно приводит к тому, что роботов все равно прихоходится дополнительно дообучать под реальный мир. Это и называется sim2real.
Так вот в Tesla утверждают, что им удалось сделать sim2real без дообучения, сразу перекинув все обученные RL политики из симуляции в реальность (и в итоге это выглядит, как на видео). А еще говорят, что и на новые навыки их подход мастабируется легко. Если все так – это просто прорыв для Tesla.
Технические детали не раскрывают, но они не первые, кому удался такой трюк. Некоторое время назад такой zero-shot впервые сделали в стартапе FigureAI (наш пост разбор). У них это было за счет больших затрат на мега-высокоточную симуляцию и чувствительность двигателей реального робота. Здесь, предположительно, что-то похожее.
x.com/Tesla_Optimus/status/1922456791549427867
На этот раз робот (вроде как) не управляется человеком, и, более того – утверждается, что инженерам удалось сделать sim2real в zero-shot, то есть с нулевым дообучением.
Объясняем, что это значит. Optimus, как и почти все современные роботы, обучается в симуляции, то есть в среде, которая моделирует физику нашего мира. В таких симуляциях сотни часов обучающих данных можно сжимать в часы, и тем самым ускорять обучение в тысячи раз.
Но есть нюанс. При переходе из симуляции в реальность роботы обычно теряют часть способностей, потому что реальная физика все-таки отличается от смоделированной. Это обычно приводит к тому, что роботов все равно прихоходится дополнительно дообучать под реальный мир. Это и называется sim2real.
Так вот в Tesla утверждают, что им удалось сделать sim2real без дообучения, сразу перекинув все обученные RL политики из симуляции в реальность (и в итоге это выглядит, как на видео). А еще говорят, что и на новые навыки их подход мастабируется легко. Если все так – это просто прорыв для Tesla.
Технические детали не раскрывают, но они не первые, кому удался такой трюк. Некоторое время назад такой zero-shot впервые сделали в стартапе FigureAI (наш пост разбор). У них это было за счет больших затрат на мега-высокоточную симуляцию и чувствительность двигателей реального робота. Здесь, предположительно, что-то похожее.
x.com/Tesla_Optimus/status/1922456791549427867
12800
07:51
14.05.2025
Только что заметили, что пост с PDF конспекта почему-то вышел с закрытыми комментариями 🤷♂️
Поэтому это – специальный пост с открытыми комментариями для вашей обратной связи. Мы всегда ей рады!
Поэтому это – специальный пост с открытыми комментариями для вашей обратной связи. Мы всегда ей рады!
12800
17:55
13.05.2025
Большой коспект по LLM от нашей команды 👍
Мы долго трудились и наконец готовы представить вам наш большой авторский конспект по языковым моделям. Почти 50 страниц, 7 разделов и все, что нужно, чтобы понять, как работают современные LLM. Внутри:
➖ Краткая история LLM от перцептрона до ризонинг-моделей
➖ Необходимая математика: линал и матанализ на пальцах
➖ Все про механизм внимания и трансформеры от А до Я
➖ Дотошное объяснения процесса предобучения
➖ Практический гайд "Как самостоятельно затюнить модель"
➖ RL – с нуля до ризонинга
Все – в иллюстрациях, схемах и интуитивно понятных примерах.
Сохраняйте, делитесь с друзьями и ставьте ❤️
Мы долго трудились и наконец готовы представить вам наш большой авторский конспект по языковым моделям. Почти 50 страниц, 7 разделов и все, что нужно, чтобы понять, как работают современные LLM. Внутри:
Все – в иллюстрациях, схемах и интуитивно понятных примерах.
Сохраняйте, делитесь с друзьями и ставьте ❤️
23300
17:42
13.05.2025
imageИзображение не доступно для предпросмотра
Intellect-2 или как обучить ризонинг модель на 32В без кластера GPU
Помните, примерно пол года назад мы рассказывали вам, как в стартапе Prime Intellect впервые децентрализованно обучили крупную LM?
Так вот теперь исследователи пошли дальше и обучили уже не просто какую-то LM-ку, а достаточно крупный ризонер. И все еще – без собственных видеокарт.
Все обучение проходило децентрализовано, то есть на серверах (часто домашних), разбросанных по всему миру и принадлежащих разным людям. Подключить свою машину, кстати, мог любой желающий. В области RL такое впервые.
Проект, конечно, очень инженерно сложный. Например, вместо обычного RL исследователям пришлось мучиться с асинхронным, а обмен весами осуществлять по специальному протоколу Shardcast.
Сами разработчики говорят, что они стремятся к чему-то типа модели Биткоина: чтобы ИИ был полностью децентрализован, и обучать модели мог каждый желающий.
Ждем Airbnb для GPU
Помните, примерно пол года назад мы рассказывали вам, как в стартапе Prime Intellect впервые децентрализованно обучили крупную LM?
Так вот теперь исследователи пошли дальше и обучили уже не просто какую-то LM-ку, а достаточно крупный ризонер. И все еще – без собственных видеокарт.
Все обучение проходило децентрализовано, то есть на серверах (часто домашних), разбросанных по всему миру и принадлежащих разным людям. Подключить свою машину, кстати, мог любой желающий. В области RL такое впервые.
Проект, конечно, очень инженерно сложный. Например, вместо обычного RL исследователям пришлось мучиться с асинхронным, а обмен весами осуществлять по специальному протоколу Shardcast.
Сами разработчики говорят, что они стремятся к чему-то типа модели Биткоина: чтобы ИИ был полностью децентрализован, и обучать модели мог каждый желающий.
Ждем Airbnb для GPU
13800
15:03
13.05.2025
close
С этим каналом часто покупают
Отзывы канала
keyboard_arrow_down
- Добавлен: Сначала новые
- Добавлен: Сначала старые
- Оценка: По убыванию
- Оценка: По возрастанию
5.0
4 отзыва за 6 мес.
Превосходно (100%) За последние 6 мес
m
**cromarketing@****.ru
на сервисе с августа 2023
31.03.202510:36
5
Оперативное размещение
Показать еще
Новинки в тематике
Лучшие в тематике
Статистика канала
Рейтинг
136.7
Оценка отзывов
5.0
Выполнено заявок
163
Подписчики:
58.6K
Просмотры на пост:
lock_outline
ER:
22.6%
Публикаций в день:
6.0
CPV
lock_outlineВыбрано
0
каналов на сумму:0.00₽
Подписчики:
0
Просмотры:
lock_outline
Перейти в корзинуКупить за:0.00₽
Комментарий