
🌸 Майская распродажа
Скидки до 70% в каталоге + дополнительно 3,5% по промокоду 75D80F4B
В каталог
Купить рекламу в этом канале
Формат:
keyboard_arrow_down
- 1/24
- 2/48
- 3/72
- Нативный
- 7 дней
- Репост
1 час в топе / 24 часа в ленте
Количество:
keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Стоимость публикации:
local_activity
23 076.90₽23 076.90₽local_mall
0.0%
Осталось по этой цене:0
Последние посты канала
play_circleВидео недоступно для предпросмотра
Устроиться аналитиком в Яндекс за выходные
7–8 июня проводим Weekend Offer Analytics. До 3 июня оставьте заявку на участие, 7 июня пройдите два технические собеседования, а 8 июня познакомьтесь с командами и получите офер.
В мероприятии участвует 12 команд: Алиса и Умные устройства, Игры, R&D, Рекламные технологии, Поиск и Суперапп, Безопасность, Коммерческий департамент, Автономный транспорт, Ecom-сценарии Поиска, Качество Поиска, Международный Поиск, Карты. Вы сможете пообщаться с менеджерами и выбрать проект, который покажется самым интересным.
Узнать подробности и зарегистрироваться можно здесь.
Реклама. ООО "Яндекс". ИНН 7736207543
7–8 июня проводим Weekend Offer Analytics. До 3 июня оставьте заявку на участие, 7 июня пройдите два технические собеседования, а 8 июня познакомьтесь с командами и получите офер.
В мероприятии участвует 12 команд: Алиса и Умные устройства, Игры, R&D, Рекламные технологии, Поиск и Суперапп, Безопасность, Коммерческий департамент, Автономный транспорт, Ecom-сценарии Поиска, Качество Поиска, Международный Поиск, Карты. Вы сможете пообщаться с менеджерами и выбрать проект, который покажется самым интересным.
Узнать подробности и зарегистрироваться можно здесь.
Реклама. ООО "Яндекс". ИНН 7736207543
1100
08:04
15.05.2025
play_circleВидео недоступно для предпросмотра
📢 Hugging Face теперь интегрирован с Kaggle Notebooks
С сегодняшнего дня пользователи Kaggle могут напрямую использовать любые модели с Hugging Face в своих ноутбуках — без ручной загрузки, настройки токенов и дополнительных библиотек.
🤝 Платформы Hugging Face и Kaggle объявили о партнёрстве, которое позволит участникам соревнований и исследователям работать с новейшими SOTA-моделями буквально "из коробки".
🔥 Это лишь первый шаг: команды уже работают над дальнейшей интеграцией, чтобы сделать работу с HF-моделями ещё удобнее внутри экосистемы Kaggle.
🔗 Попробовать можно прямо сейчас — поддержка уже включена в среду Kaggle Notebooks.
https://huggingface.co/blog/kaggle-integration
С сегодняшнего дня пользователи Kaggle могут напрямую использовать любые модели с Hugging Face в своих ноутбуках — без ручной загрузки, настройки токенов и дополнительных библиотек.
🤝 Платформы Hugging Face и Kaggle объявили о партнёрстве, которое позволит участникам соревнований и исследователям работать с новейшими SOTA-моделями буквально "из коробки".
🔥 Это лишь первый шаг: команды уже работают над дальнейшей интеграцией, чтобы сделать работу с HF-моделями ещё удобнее внутри экосистемы Kaggle.
🔗 Попробовать можно прямо сейчас — поддержка уже включена в среду Kaggle Notebooks.
https://huggingface.co/blog/kaggle-integration
3000
16:38
14.05.2025
imageИзображение не доступно для предпросмотра
🎨 Step1X-3D — Генерация текстурированных 3D-объектов нового поколения
Step1X-3D — это открытая исследовательская платформа для высокоточной, воспроизводимой и управляемой генерации текстурированных 3D-ассетов. Проект разработан командой [StepFun](https://github.com/stepfun-ai) и доступен на Hugging Face.
🔧 Основные компоненты
- 📦 Очистка и подготовка данных
Обработано более 5 миллионов 3D-моделей. Отобраны 2 миллиона высококачественных ассетов с нормализованной геометрией и текстурами. Более 800 тысяч объектов доступны открыто.
- 🧠 Двухэтапная генеративная архитектура
1. Генерация геометрии
Используется гибрид VAE + Denoising Diffusion Transformer (DiT) для создания TSDF-представлений. Применяется латентное кодирование и выборка по краевым признакам для детализации.
2. Синтез текстур
Диффузионная модель с геометрическим кондиционированием и согласованием в латентном пространстве для кросс-вью согласованности.
- 🧪 Open Source
Полностью открыт: доступны обученные модели, код, примеры и pipeline для адаптации.
🌟 Особенности
- 🔄 Интеграция 2D → 3D
Поддерживает использование техник управления, таких как LoRA, из 2D генерации — теперь и для 3D-объектов.
- 🥇 SOTA-качество
По ряду метрик превосходит существующие open-source решения и приближается к проприетарным системам.
Step1X-3D задаёт новый стандарт в открытых 3D-исследованиях, объединяя качество, гибкость и открытость для исследователей, разработчиков и креаторов.
- 📄 Hugging Face
- 💻 GitHub
- 🚀 Демо
- ▶️ YouTube
Step1X-3D — это открытая исследовательская платформа для высокоточной, воспроизводимой и управляемой генерации текстурированных 3D-ассетов. Проект разработан командой [StepFun](https://github.com/stepfun-ai) и доступен на Hugging Face.
🔧 Основные компоненты
- 📦 Очистка и подготовка данных
Обработано более 5 миллионов 3D-моделей. Отобраны 2 миллиона высококачественных ассетов с нормализованной геометрией и текстурами. Более 800 тысяч объектов доступны открыто.
- 🧠 Двухэтапная генеративная архитектура
1. Генерация геометрии
Используется гибрид VAE + Denoising Diffusion Transformer (DiT) для создания TSDF-представлений. Применяется латентное кодирование и выборка по краевым признакам для детализации.
2. Синтез текстур
Диффузионная модель с геометрическим кондиционированием и согласованием в латентном пространстве для кросс-вью согласованности.
- 🧪 Open Source
Полностью открыт: доступны обученные модели, код, примеры и pipeline для адаптации.
🌟 Особенности
- 🔄 Интеграция 2D → 3D
Поддерживает использование техник управления, таких как LoRA, из 2D генерации — теперь и для 3D-объектов.
- 🥇 SOTA-качество
По ряду метрик превосходит существующие open-source решения и приближается к проприетарным системам.
Step1X-3D задаёт новый стандарт в открытых 3D-исследованиях, объединяя качество, гибкость и открытость для исследователей, разработчиков и креаторов.
- 📄 Hugging Face
- 💻 GitHub
- 🚀 Демо
- ▶️ YouTube
2700
14:00
14.05.2025
imageИзображение не доступно для предпросмотра
Anthropic проводит испытания безопасности новой модели под названием «Клод-Нептун».
Не удивлюсь, если мы скоро увидим Claude 4.
Дарио Амодей в своём последнем интервью говорил, что Claude 4 будет готов через шесть месяцев. Похоже, это время уже подходит.
#Claude
@data_analysis_ml - подписаться
Не удивлюсь, если мы скоро увидим Claude 4.
Дарио Амодей в своём последнем интервью говорил, что Claude 4 будет готов через шесть месяцев. Похоже, это время уже подходит.
#Claude
@data_analysis_ml - подписаться
7100
09:05
14.05.2025
imageИзображение не доступно для предпросмотра
Anthropic проводит испытания безопасности новой модели под названием «Клод-Нептун».
Не удивлюсь, если мы скоро увидим Claude 4.
Дарио Амодей в своём последнем интервью говорил, что Claude 4 будет готов через шесть месяцев. Похоже, это время уже подходит.
#Claude
@data_analysis_ml - подписаться
Не удивлюсь, если мы скоро увидим Claude 4.
Дарио Амодей в своём последнем интервью говорил, что Claude 4 будет готов через шесть месяцев. Похоже, это время уже подходит.
#Claude
@data_analysis_ml - подписаться
7100
09:05
14.05.2025
play_circleВидео недоступно для предпросмотра
NVIDIA отправит более 18 000 флагманских Blackwell GB300 в саудовскую компанию-стартап Humain, заявил CEO Джeнсeн Хуанг на инвестиционном форуме в Эр-Рияде. Эти чипы, одни из самых мощных в мире, будут работать в дата-центрах суммарной мощностью 500 мегаватт, помогая строить ИИ-инфраструктуру страны.
Humain, принадлежащая местному суверенному фонду, позже задействует «сотни тысяч» GPU. AMD тоже участвует в проекте, и тоже поставит свои чипы для аналогичной инфраструктуры на $10 млрд.
cnbc.com
Audible объявил о внедрении полного цикла производства аудиокниг на основе ИИ — от перевода до озвучки. В ближайшие месяцы сервис предложит более 100 синтезированных голосов на английском, испанском, французском и итальянском языках с акцентами и диалектами.
Технология поддерживает два варианта перевода: текст-текст (с последующей озвучкой) и речь-речь, сохраняющую стиль оригинального чтеца. Для точности перевода доступна проверка профессиональными лингвистами. Первые тесты перевода стартуют этой осенью.
thebookseller.com
Tencent запустил CodeBuddy, инструмент, который может стать конкурентом Cursor. Он поддерживает автодополнение кода, диагностику ошибок, рефакторинг, написание тестов и ревью, а также работает с экосистемой WeChat.
Особенность сервиса - режим Craft: ИИ понимает задачи на естественном языке и генерирует проекты из нескольких файлов. CodeBuddy поддерживает MCP-протокол, позволяя интегрировать сторонние инструменты без лишних телодвижений. В основе — модели DeepSeek V3 и HunYuan Turbo S, доступные бесплатно. Инструмент совместим с VSCode, Jetbrains и другими IDE.
copilot.tencent.com
Портал videocardz поделился слухами о том, что один из партнеров Intel разрабатывает двухчиповую версию видеокарты Arc B580 с суммарными 48 ГБ видеопамяти. По данным неназванного источника, устройство получит нестандартный дизайн, а его анонс запланирован на ближайшую неделю. Хотя точный бренд пока не называется, известно, что проект не является официальной разработкой Intel и находится под NDA.
При этом, обычная версия B580 с 24 ГБ задерживается на несколько месяцев и есть вероятность, что это связано с "мистической" 48 ГБ-версией. Если информация подтвердится, это станет редким случаем десктопного двухчипового решения в эпоху монопольных GPU. Ждем подробностей на Computex.
videocardz.com
Системный промпт Claude, описывающий поведение модели и ее инструменты, слили в сеть — 16,7 тыс. слов и 24 тыс. токенов. Документ раскрывает детали от формата ответов до методов решения задач, например, как считать буквы в слове «strawberry». В сравнении с 2,2 тыс. словами у OpenAI он гигантский. Большая часть текста посвящена интеграции с MCP-сервером, поисковыми правилами и «горячими исправлениями» для данных после 2024 года.
Andrej Karpathy назвал утечку поводом обсудить новую парадигму обучения ИИ: вместо тонкой настройки весов модели он предложил редактировать промпты вручную, как человек использует заметки. Это должно помочь ИИ запоминать стратегии и адаптироваться к контексту. Однако критики возражают: автономные подсказки могут запутать модель, а без постоянного обучения эффект будет краткосрочным.
news.ycombinator.com
@ai_machinelearning_big_data
#news #ai #ml
2200
06:42
14.05.2025
imageИзображение не доступно для предпросмотраplay_circleВидео недоступно для предпросмотра
🔍 Что такое AssetGen 2.0?
AssetGen 2.0 — это новый фреймворк-от способный создавать высококачественные 3D-модели и текстуры на основе текстовых или визуальных запросов. Она объединяет два компонента:
- 3D-меши: создаются с использованием одностадийной диффузионной модели, обеспечивающей высокую детализацию и геометрическую точность.
Текстуры: генерируются с помощью модели TextureGen, которая обеспечивает высокое качество и согласованность текстур.
🆚 Улучшения по сравнению с AssetGen 1.0
Одностадийная генерация: AssetGen 2.0 использует одностадийную диффузионную модель, что позволяет напрямую создавать 3D-объекты из текстовых или визуальных запросов, улучшая качество и сокращая время генерации.
Повышенная детализация: новая архитектура обеспечивает более высокую детализацию и точность геометрии по сравнению с предыдущей версией.
Улучшенные текстуры: TextureGen обеспечивает более высокое качество текстур с улучшенной согласованностью между различными видами объекта.
🌍AssetGen 2.0 уже используется внутри компании для создания 3D-миров и будет доступна для разработчиков Horizon позже в этом году. Планируется также расширение возможностей модели для генерации целых 3D-сцен на основе текстовых или визуальных запросов.
🔗 Подробнее
@data_analysis_ml
AssetGen 2.0 — это новый фреймворк-от способный создавать высококачественные 3D-модели и текстуры на основе текстовых или визуальных запросов. Она объединяет два компонента:
- 3D-меши: создаются с использованием одностадийной диффузионной модели, обеспечивающей высокую детализацию и геометрическую точность.
Текстуры: генерируются с помощью модели TextureGen, которая обеспечивает высокое качество и согласованность текстур.
🆚 Улучшения по сравнению с AssetGen 1.0
Одностадийная генерация: AssetGen 2.0 использует одностадийную диффузионную модель, что позволяет напрямую создавать 3D-объекты из текстовых или визуальных запросов, улучшая качество и сокращая время генерации.
Повышенная детализация: новая архитектура обеспечивает более высокую детализацию и точность геометрии по сравнению с предыдущей версией.
Улучшенные текстуры: TextureGen обеспечивает более высокое качество текстур с улучшенной согласованностью между различными видами объекта.
🌍AssetGen 2.0 уже используется внутри компании для создания 3D-миров и будет доступна для разработчиков Horizon позже в этом году. Планируется также расширение возможностей модели для генерации целых 3D-сцен на основе текстовых или визуальных запросов.
🔗 Подробнее
@data_analysis_ml
🔍 Что такое AssetGen 2.0?
AssetGen 2.0 — это новый фреймворк-от способный создавать высококачественные 3D-модели и текстуры на основе текстовых или визуальных запросов. Она объединяет два компонента:
- 3D-меши: создаются с использованием одностадийной диффузионной модели, обеспечивающей высокую детализацию и геометрическую точность.
Текстуры: генерируются с помощью модели TextureGen, которая обеспечивает высокое качество и согласованность текстур.
🆚 Улучшения по сравнению с AssetGen 1.0
Одностадийная генерация: AssetGen 2.0 использует одностадийную диффузионную модель, что позволяет напрямую создавать 3D-объекты из текстовых или визуальных запросов, улучшая качество и сокращая время генерации.
Повышенная детализация: новая архитектура обеспечивает более высокую детализацию и точность геометрии по сравнению с предыдущей версией.
Улучшенные текстуры: TextureGen обеспечивает более высокое качество текстур с улучшенной согласованностью между различными видами объекта.
🌍AssetGen 2.0 уже используется внутри компании для создания 3D-миров и будет доступна для разработчиков Horizon позже в этом году. Планируется также расширение возможностей модели для генерации целых 3D-сцен на основе текстовых или визуальных запросов.
🔗 Подробнее
@data_analysis_ml
AssetGen 2.0 — это новый фреймворк-от способный создавать высококачественные 3D-модели и текстуры на основе текстовых или визуальных запросов. Она объединяет два компонента:
- 3D-меши: создаются с использованием одностадийной диффузионной модели, обеспечивающей высокую детализацию и геометрическую точность.
Текстуры: генерируются с помощью модели TextureGen, которая обеспечивает высокое качество и согласованность текстур.
🆚 Улучшения по сравнению с AssetGen 1.0
Одностадийная генерация: AssetGen 2.0 использует одностадийную диффузионную модель, что позволяет напрямую создавать 3D-объекты из текстовых или визуальных запросов, улучшая качество и сокращая время генерации.
Повышенная детализация: новая архитектура обеспечивает более высокую детализацию и точность геометрии по сравнению с предыдущей версией.
Улучшенные текстуры: TextureGen обеспечивает более высокое качество текстур с улучшенной согласованностью между различными видами объекта.
🌍AssetGen 2.0 уже используется внутри компании для создания 3D-миров и будет доступна для разработчиков Horizon позже в этом году. Планируется также расширение возможностей модели для генерации целых 3D-сцен на основе текстовых или визуальных запросов.
🔗 Подробнее
@data_analysis_ml
4100
10:34
13.05.2025
play_circleВидео недоступно для предпросмотра
Сэм Альтман:
2025 — год ИИ-агентов
2026 — год научных исследований и прорывов
2027 — год, когда ИИ и робототехника действительно начнут взаимодействовать с физическим миром
Погнали!
@data_analysis_ml
2025 — год ИИ-агентов
2026 — год научных исследований и прорывов
2027 — год, когда ИИ и робототехника действительно начнут взаимодействовать с физическим миром
Погнали!
@data_analysis_ml
4500
08:44
13.05.2025
imageИзображение не доступно для предпросмотра
🩺 HealthBench — новый бенчмарк от OpenAI для оценки ИИ в медицине
OpenAI представила HealthBench — масштабный бенчмарк, разработанный для оценки возможностей языковых моделей в медицинских сценариях. Он создан в сотрудничестве с 262 врачами из 60 стран и включает 5 000 реалистичных медицинских диалогов.
🔍 Основные особенности HealthBench:
- Реалистичные кейсы: Диалоги отражают реальные взаимодействия между пациентами и врачами, охватывая различные медицинские специальности и контексты.
- Многоязычность: Бенчмарк поддерживает несколько языков, что позволяет оценивать модели в глобальном масштабе.
- Оценка по рубрикам: Каждый ответ модели оценивается по набору критериев, разработанных врачами, с учетом полноты, точности и уместности.
Открытый доступ: Код и данные доступны на GitHub, что способствует прозрачности и сотрудничеству в исследовательском сообществе.
HealthBench устанавливает новый стандарт для оценки ИИ в здравоохранении, обеспечивая более надежные и безопасные инструменты для пациентов и врачей.
🔗 Подробнее: https://openai.com/index/healthbench/
OpenAI представила HealthBench — масштабный бенчмарк, разработанный для оценки возможностей языковых моделей в медицинских сценариях. Он создан в сотрудничестве с 262 врачами из 60 стран и включает 5 000 реалистичных медицинских диалогов.
🔍 Основные особенности HealthBench:
- Реалистичные кейсы: Диалоги отражают реальные взаимодействия между пациентами и врачами, охватывая различные медицинские специальности и контексты.
- Многоязычность: Бенчмарк поддерживает несколько языков, что позволяет оценивать модели в глобальном масштабе.
- Оценка по рубрикам: Каждый ответ модели оценивается по набору критериев, разработанных врачами, с учетом полноты, точности и уместности.
Открытый доступ: Код и данные доступны на GitHub, что способствует прозрачности и сотрудничеству в исследовательском сообществе.
HealthBench устанавливает новый стандарт для оценки ИИ в здравоохранении, обеспечивая более надежные и безопасные инструменты для пациентов и врачей.
🔗 Подробнее: https://openai.com/index/healthbench/
3900
18:03
12.05.2025
imageИзображение не доступно для предпросмотра
Хотите быстро разобраться в PyTorch и написать свою нейросеть? Мы подготовили для вас вебинар, где на практике разберём все этапы создания ML-модели.
Вебинар проведет Владислав Агафонов — ML-инженер, ранее работал в Yandex и Huawei.
Что будет на вебинаре?
🕗 Встречаемся 14 мая в 18:30 по МСК, будет много практики, ответы на вопросы и полезные инсайты от эксперта.
3500
16:00
12.05.2025
close
С этим каналом часто покупают
Отзывы канала
keyboard_arrow_down
- Добавлен: Сначала новые
- Добавлен: Сначала старые
- Оценка: По убыванию
- Оценка: По возрастанию
4.7
2 отзыва за 6 мес.
Превосходно (50%) За последние 6 мес
Хорошо (50%) За последние 6 мес
m
**cromarketing@****.ru
на сервисе с августа 2023
11.03.202520:25
5
Оперативное размещение
Показать еще
Лучшие в тематике
Новинки в тематике
Статистика канала
Рейтинг
73.1
Оценка отзывов
4.7
Выполнено заявок
194
Подписчики:
45.2K
Просмотры на пост:
lock_outline
ER:
6.6%
Публикаций в день:
4.0
CPV
lock_outlineВыбрано
0
каналов на сумму:0.00₽
Подписчики:
0
Просмотры:
lock_outline
Перейти в корзинуКупить за:0.00₽
Комментарий