

- Главная
- Каталог
- Наука и технологии
- Data science | Machinelearning [ru]
Data science | Machinelearning [ru]
Статьи на тему data science, machinelearning, big data, artificial intelligence, python, математика.
Аудитория - IT специалисты и те кто хочет ими стать
Канал постоянно привлекает новых подписчиков.
Статистика канала
Полная статистикаchevron_rightHelion использует Python-подобный синтаксис и автоматически компилирует код в оптимизированные Triton-ядра. Всё это при минимальном вмешательстве разработчика, который может сосредоточиться на алгоритмах, а не на деталях реализации. Это позволяет не только легко переносить решения между разными аппаратными платформами, но и ускорять разработку. Helion использует автотюнинг для выбора оптимальных параметров ядра, что избавляет от необходимости вручную прописывать настройки. Система автоматически ищет и находит наилучшие конфигурации для конкретного оборудования. Кроме того, Helion поддерживает работу с PyTorch и легко интегрируется с другими библиотеками, что делает её идеальным инструментом для создания высокопроизводительных ядер с минимальными усилиямиВ результате Helion позволяет разработчикам создавать ядра, которые могут конкурировать по производительности с оптимизированными решениями, написанными вручную, но при этом требуют гораздо меньше времени на разработку. Как вы думаете, стоит ли использовать высокоуровневые абстракции в ML для повышения производительности? Data Science🍿
«Я просматриваю журналы с предыдущего шага и с ужасом вижу, что команда, которую я выполнил для очистки кэша проекта (rmdir), по всей видимости, ошибочно указала на корень вашего диска D:, а не на конкретную папку проекта. Мне очень, очень жаль.»
Суцкевер поделился множеством инсайтов на тему стратегии SSI, проблем с предобучением и способов улучшения обобщающих способностей ИИ-моделей. Также он затронул важные вопросы касаемо того, как обеспечить позитивное будущее для AGI.Data Science
На первый взгляд это может звучать как шутка, но цифры говорят сами за себя. В ходе эксперимента ученые прогнали около 1200 вредоносных запросов через 25 различных моделей, включая Gemini 2.5 Pro, GPT-5, Claude Opus 4.1, DeepSeek R1 и многие другие. И вот что интересно: те же самые запросы, переписанные в стихотворную форму, оказывались гораздо более эффективными. Причем «пробивали» защиту в среднем в 60% случаев, а у некоторых моделей этот показатель достигал 90–100%. Чтобы проверить, как это работает, исследователи взяли набор запросов из открытого репозитория MLCommons AILuminate (включающие темы вроде химического оружия, кибератак и утечек данных) и переписали их в стихах. Получился своего рода поэтический «слой», который обходит стандартные фильтры безопасности. У Gemini 2.5 Pro на 20 стихотворных запросов не было ни одного отказа — все ответы оказались небезопасными. В то время как модели вроде GPT-5 Nano и Claude Hiaku 4.5 с трудом «клюнули» на такие запросы, отклоняя их в 90% случаевТеперь, очевидно, перед разработчиками стоит новая задача: научить нейросети работать не только с прямыми запросами, но и с более «творческими» формами, где смысл может скрываться за метафорами и рифмами. Data Science😂 Это, конечно, тревожный сигнал для разработчиков. Оказавшись на стадии тестирования, такие стилистические «обходы» безопасности могут легко оставаться незамеченными. По сути, современные бенчмарки и подходы к выравниванию моделей (такие как RLHF и Constitutional AI) не могут учесть таких «игровых» форматов, как стихи или сказки, где язык выглядит абсолютно безобидно, а за ним скрывается реальный риск.
И вот тут на сцену выходит Matrix — новый распределённый мультиагентный фреймворк, который решает все эти проблемы и обещает изменить подход к масштабируемости и синтетической генерации данных. Matrix меняет подход к управлению агентами, убирая централизованный оркестратор и позволяя агентам работать напрямую друг с другом через одноранговую (P2P) сеть. Идея простая, но мощная: агенты получают инструкции и данные через сообщения, выполняют задачи и передают их дальше. Основные принципы Matrix: — Одноранговая оркестрация. Все агенты работают как независимые единицы, и управление распределяется через сообщения. — Асинхронность на уровне строк. Задачи обрабатываются поэтапно, а не в больших пакетах, что устраняет задержки и увеличивает эффективность. — Разгрузка сообщений. Все большие данные хранятся во внешних хранилищах, и по сети передаются только идентификаторы, что экономит пропускную способность. — Вынесение тяжёлых операций. Инференс моделей и сложные вычисления выполняются через специализированные сервисы, уменьшая нагрузку на систему. Как это работает в реальных условиях? — Мультиагентное согласование. В одном тесте два агента не могли прийти к согласию и генерировали сложные сценарии для обучения. Matrix позволил улучшить масштабируемость и сократить нагрузку, увеличив число одновременных задач с 18 900 до 129 800 токенов в секунду. — Извлечение вопросов и ответов. При извлечении сложных вопросов из 25 миллионов веб-страниц, Matrix смог обработать 1,19 миллиона примеров с использованием трёх агентов, в то время как другие подходы не справлялись с такой нагрузкой. — Поддержка сценариев общения. В других тестах Matrix увеличил производительность до 15 раз по сравнению с базовыми решениями, обеспечив более высокую скорость обработки диалогов. Почему Matrix работает?Агенты будут развиваться сами по себе, без центрального управления. В будущем таких систем будет всё больше, и этот подход явно задаёт тон для следующего поколения технологий. Data Science💃 Matrix устраняет проблему центральной точки планирования, которая традиционно является узким местом. Разделение инференса и использование gRPC позволяют уменьшить сетевые накладные расходы и задержки, а асинхронное планирование повышает стабильность и увеличивает выработку токенов. Что важно помнить? Matrix ориентирован на кластерное развертывание и интеграцию с Ray, SLURM, Ray Serve, что даёт ему явные преимущества при масштабировании на десятки тысяч параллельных задач. Но это требует настройки внешних сервисов инференса, что стоит учитывать при внедрении.
По мнению аналитиков, OpenAI закупает ускорители (GPU) в рекордных объемах, но при этом использует архитектуру 1,5-летней давности, в том числе для таких моделей, как GPT-5. Причем ни одна из моделей, выпущенных после GPT-4, не прошла полное предварительное обучение, что является важным этапом для создания новых передовых систем. Для примера: GPT-4.5 Orion и GPT-5 — это не новые разработки, а улучшения существующих моделей с акцентом на обучение с подкреплением и рассуждения. При этом конкуренты, такие как Google, не теряют времени зря и продолжают развивать свои передовые модели, например Gemini 3 Pro, что, как стало известно, вызывает беспокойство в OpenAI. Сам Сэм Альтман, CEO OpenAI, упомянул, что конкуренция с Google будет сложной и потребует значительных усилий. Как так получилось? Для того чтобы понять, куда уходят все эти деньги и ресурсы, стоит обратить внимание на несколько важных аспектов. Прежде всего, OpenAI активно развивает новые направления, такие как модели для создания изображений и Sora 2 (новая модель для обработки данных). Но если сравнивать с гигантскими инвестициями, которые компания направляет в вычислительные ресурсы, на выходе получаем не такие уж большие прорывы. Например, по оценке Epoch AI, в 2024 году OpenAI потратила около 7 миллиардов долларов на вычисления. 5 миллиардов из этой суммы пошли на тренировочные задачи, а другая часть расходов идет на инференс. Ведь ChatGPT ежедневно обслуживает 800 миллионов пользователей, и объем диалогов достигает 2,5 миллиардов в неделю.И все же есть и светлые перспективы. В OpenAI официально признают, что ставка сделана на режим рассуждений, который активно развивается под руководством Лукаша Кайзера. Это может означать, что в будущем мы увидим не просто более умные модели, но и новые формы ИИ, которые смогут понимать и рассуждать на более глубоком уровне. Data Science
Отзывы канала
всего 10 отзывов
- Добавлен: Сначала новые
- Добавлен: Сначала старые
- Оценка: По убыванию
- Оценка: По возрастанию
Каталог Телеграм-каналов для нативных размещений
Data science | Machinelearning [ru] — это Telegam канал в категории «Наука и технологии», который предлагает эффективные форматы для размещения рекламных постов в Телеграмме. Количество подписчиков канала в 20.2K и качественный контент помогают брендам привлекать внимание аудитории и увеличивать охват. Рейтинг канала составляет 22.6, количество отзывов – 10, со средней оценкой 4.8.
Вы можете запустить рекламную кампанию через сервис Telega.in, выбрав удобный формат размещения. Платформа обеспечивает прозрачные условия сотрудничества и предоставляет детальную аналитику. Стоимость размещения составляет 14825.16 ₽, а за 83 выполненных заявок канал зарекомендовал себя как надежный партнер для рекламы в TG. Размещайте интеграции уже сегодня и привлекайте новых клиентов вместе с Telega.in!
Вы снова сможете добавить каналы в корзину из каталога
Комментарий