
⚡️ Заказывайте в AI-каталоге — получайте скидку!
5% скидка на размещения в каналах, которые подобрал AI. Промокод: TELEGA-AI
Подробнее

РегистрацияВойтиВойти
Скидка 3,5% на первые три заказа
Получите скидку на первые три заказа!
Зарегистрируйтесь и получите скидку 3,5% на первые рекламные кампании — промокод активен 7 дней.
17.2

Python вопросы с собеседований
5.0
16
Поделиться
В избранное
Купить рекламу в этом канале
Формат:
keyboard_arrow_down
- 1/24
- 2/48
- 3/72
- Нативный
- 7 дней
- Репост
1 час в топе / 24 часа в ленте
Количество:
keyboard_arrow_down
- 1
- 2
- 3
- 4
- 5
- 8
- 10
- 15
Стоимость публикации:
local_activity
6 573.42₽6 573.42₽local_mall
0.0%
Осталось по этой цене:0
Последние посты канала
imageИзображение не доступно для предпросмотра
🎙️ pytest-recording — плагин для записи и воспроизведения HTTP-запросов в тестах Инструмент использует VCR.py под капотом, чтобы сохранять сетевые взаимодействия в YAML-кассеты и переиспользовать их при последующих запусках. Достаточно добавить @pytest.mark.vcr к тесту и все запросы автоматически запишутся или возьмутся из кэша.
Особенно удобно для тестирования API, можно блокировать случайные сетевые вызовы через @pytest.mark.block_network и точечно разрешать только нужные хосты. Поддерживается тонкая настройка через vcr_config и работа в режиме перезаписи кассет.
🤖 GitHub
@python_job_interview
Особенно удобно для тестирования API, можно блокировать случайные сетевые вызовы через @pytest.mark.block_network и точечно разрешать только нужные хосты. Поддерживается тонкая настройка через vcr_config и работа в режиме перезаписи кассет.
🤖 GitHub
@python_job_interview
1810
13:04
10.07.2025
imageИзображение не доступно для предпросмотра
🔥 Google DeepMind представили новую open-source библиотеку на Python для сборки асинхронных AI‑пайплайнов в реальном времени!
Новая библиотека позволяет собирать AI-процессы из компонентов — как LEGO для ИИ-агентов.
🔧 Особенности:
- Построение асинхронных, компонуемых пайплайнов
- Поддержка Gemini и Gemini Live API
- Основана на asyncio
- Обрабатывает мультимодальные данные: текст, изображения, аудио
- Внутри готовые агенты: real-time агент, исследователь, live-комментатор
💡 Подходит для:
- Разработки ИИ-агентов
- Генеративных моделей, работающих в реальном времени
- Быстрой сборки MVP с мультимодальными возможностями
Установка:
pip install genai-processors
{}
Открытый код, готовые компоненты и интеграция с API.
• Repo: https://github.com/google-gemini/genai-processors
• Blog: https://developers.googleblog.com/en/genai-processors/
@ai_machinelearning_big_data
#DeepMind #ai #ml1274
12:48
11.07.2025
🐍 Совет дня для опытных Python-разработчиков
📌 Используй декораторы с параметрами — мощный приём для логирования, контроля, кэширования и кастомных проверок.
Пример: логгер, у которого можно задать уровень логирования через аргумент:
import functools
import logging
def log(level=logging.INFO):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
logging.log(level, f"Вызов {func.__name__} с args={args}, kwargs={kwargs}")
return func(*args, **kwargs)
return wrapper
return decorator
@log(logging.DEBUG)
def compute(x, y):
return x + y
{}
✅ Зачем это нужно:
Декоратор гибко настраивается;
Подходит для трассировки в проде и отладки в деве;
Сохраняет сигнатуру и docstring благодаря @functools.wraps.
⚠️ Совет: избегай вложенности >2 уровней и всегда пиши тесты на поведение декоратора.
Python даёт инструменты, которые выглядят магией, но работают стабильно — если знаешь, как ими пользоваться.1618
18:07
11.07.2025
imageИзображение не доступно для предпросмотра
👾 GREMLLM — теперь у ваших багов есть сознание
GREMLLM — это необычный Python-класс, в котором все методы и свойства создаются динамически с помощью LLM. Вы описываете, *что за объект вы хотите*, и дальше GREMLLM сам решает, что должно происходить при вызове методов или обращении к полям.
📦 Установка:
pip install gremllm
{}
🔧 Пример:
from gremllm import Gremllm
counter = Gremllm('counter')
counter.value = 5
counter.increment()
print(counter.value) # → 6?
print(counter.to_roman_numerals()) # → VI?
{}
🧩 Возможности:
– Динамическое поведение: всё определяется "на лету" с помощью LLM
– Поддержка OpenAI, Claude, Gemini, и локальных моделей
– Wet Mode: можно строить цепочки вызовов (методы возвращают объекты)
– Verbose Mode: выводит, какой код был сгенерирован
– Умная обработка ошибок и настройка через наследование
⚠️ Это экспериментальный инструмент. Не для продакшена. Но очень интересен для изучения LLM-интеграций в Python-код.
🔗 Репозиторий: https://github.com/ur-whitelab/gremllm
@pythonl1601
15:04
12.07.2025
play_circleВидео недоступно для предпросмотра
🧠 Ускорь import в Python-проектах с помощью lazy loading — без изменения логики
Если у тебя проект с тяжёлыми модулями (`pandas`,
torch
, tensorflow`), но они не всегда нужны — не загружай их зря. Python позволяет **отложить импорт до первого использования**, через встроённый `importlib
.
Вот как это выглядит на практике:
import importlib
# Обёртка для ленивого импорта
def lazy_import(name):
return importlib.util.LazyLoader(importlib.import_module(name))
# Использование
np = lazy_import('numpy')
# numpy ещё не загружен
# Теперь загрузится:
print(np.array([1, 2, 3])){}
1599
14:02
13.07.2025
🧠 Хитрая задача по Python — *ловушка с изменяемыми значениями по умолчанию*
Вопрос:
Что выведет следующий код?
def append_to_list(value, my_list=[]):
my_list.append(value)
return my_list
print(append_to_list(1))
print(append_to_list(2))
print(append_to_list(3))
{}
Ваш ответ? 🤔
Многие ожидают:
[1]
[2]
[3]
{}
Но фактически вывод будет:
python
[1]
[1, 2]
[1, 2, 3]
{}
🔍 Почему так происходит?
Параметр my_list=[] создаётся один раз — при определении функции. И он сохраняется между вызовами. То есть все вызовы функции используют один и тот же список по умолчанию.
Это одна из самых частых ошибок в продакшене.
✅ Правильный способ — использовать None как значение по умолчанию:
def append_to_list(value, my_list=None):
if my_list is None:
my_list = []
my_list.append(value)
return my_list
{}
Теперь:
[1]
[2]
[3]
{}
Каждый вызов получает новый список.
⚠️ Если вы работаете с функциями, которые принимают списки или словари — всегда проверяйте, не мутируется ли значение между вызовами.1571
11:33
14.07.2025
imageИзображение не доступно для предпросмотра
🚀 Как оптимизировать Python‑код уже на старте — советы для новичков
Не нужно быть профи, чтобы писать быстрый и аккуратный код. Вот 7 простых приёмов, которые реально помогают:
1. Используй профайлеры (cProfile, Py‑Spy)
Перед оптимизацией — измерь время. Часто больше всего тормозят совсем неожиданные места.
2. Перестрой алгоритмы и структуры данных
Выбор между списком, множеством или словарём может кардинально изменить сложность: O(1) вместо O(n) при поиске.
3. Выбирай встроенные функции
map
, max
, join
— всё это написано на C и работает быстрее ручных циклов.
4. Пиши list/dict comprehensions и используй zip, enumerate
Это компактнее, читабельнее и часто быстрее классических for-циклов.
5. Генераторы вместо списков, где не нужен весь набор сразу
Снижают потребление памяти и ускоряют обработку.
6. Переход на PyPy или JIT‑ускорители
PyPy, Numba и Cython могут дать прирост производительности в 2–100 раз для тяжёлых вычислений.
7. Избегай преждевременной оптимизации
Оптимизируй только то, что реально тормозит. Профайлер покажет, где именно.
🧩 Быстрый чек-лист:
• Измерил ли я время выполнения?
• Подходящие ли структуры данных?
• Используются ли встроенные функции?
• Применены ли comprehensions и генераторы?
• Рассматривал ли я PyPy или JIT?
• Код по-прежнему читаемый?
✅ Вывод: даже новичок может писать быстрый и понятный Python-код. Главное — думать, замерять и улучшать без фанатизма.
▶️ Подробности с кодом1275
16:04
16.07.2025
imageИзображение не доступно для предпросмотра
📦 Pydantic Extra Types — коллекция дополнительных типов данных для Pydantic, которые не вошли в основную библиотеку. Проект расширяет возможности валидации данных, предлагая специфические форматы и проверки.
Типы подключаются как опциональные зависимости, позволяя выбирать только нужные компоненты. Например, можно добавить поддержку pendulum для работы с временными зонами.
🤖 GitHub
@python_job_interview
1122
16:00
17.07.2025
close
С этим каналом часто покупают
Отзывы канала
keyboard_arrow_down
- Добавлен: Сначала новые
- Добавлен: Сначала старые
- Оценка: По убыванию
- Оценка: По возрастанию
5.0
2 отзыва за 6 мес.
Превосходно (100%) За последние 6 мес
y
**egurnova@****.ru
на сервисе с мая 2024
16.06.202513:41
5
Оперативное размещение
Показать еще
Новинки в тематике
Лучшие в тематике
Статистика канала
Рейтинг
17.2
Оценка отзывов
5.0
Выполнено заявок
65
Подписчики:
25.0K
Просмотры на пост:
lock_outline
ER:
4.6%
Публикаций в день:
0.0
CPV
lock_outlineВыбрано
0
каналов на сумму:0.00₽
Подписчики:
0
Просмотры:
lock_outline
Перейти в корзинуКупить за:0.00₽
Комментарий