

- Главная
- Каталог
- Интернет технологии
- Data Science ODS
Data Science ODS
data ods официальный канал, крупнейшее сообщество data science, machine learning
Статистика канала
Полная статистикаchevron_rightList[int] и Optional[str].
Главные идеи:
✔️ TypeGuard и новый TypeIs позволяют писать функции, которые доказательно сужают типы - например, проверка превращает Any в конкретный тип для дальнейшего кода.
✔️ assert_never из typing помогает ловить случаи, когда ты забыл обработать один из вариантов, что особенно важно в match и сложных условных ветках.
✔️ Python 3.13+ добавляет улучшенный вывод типов и строгие проверки, чтобы типизированный код стал надёжнее.
✔️ Поддержка typed function overloading - теперь можно описывать разные сигнатуры для одной функции, и анализаторы понимают их корректно.
📌 Вывод из статьи - Python типизация уже стала инструментом для архитектуры и предотвращения ошибок, особенно в больших проектах. Но большинство разработчиков использует только её простейший слой.
Кому полезно:
• работаешь с крупными кодовыми базами
• пишешь библиотеки
• хочешь меньше скрытых багов и более предсказуемые refactor-ы
Источник: martynassubonis.substack.com/p/advanced-overlooked-python-typingФреймворки, например scikit-learn, сделали нас ленивыми. Вызов model.fit стал настолько обыденным, что в эпоху Gen AI кажется, будто обучение модели -это просто подбор параметров. ML-инженеры жонглируют моделями со сложностью, которая растет в геометрической прогрессии, но при этом они не всегда способны вручную пересчитать и объяснить результаты даже самых простых алгоритмов: линейной регрессии или классификатора. Модели превратились в "черные ящики", и это огромная проблема, ведь знание, что стоит за каждой функцией, критически важно для понимания процесса.Фишка в том, что весь материал разбирается в Excel. Звучит диковато, но в этом и есть гений. В отличие от кода, где операции скрыты за функциями, в Excel каждая формула, каждое число, каждый расчет - всё на виду. Никаких "черных ящиков". Уже вышло 7 статей:
Отзывы канала
Каталог Телеграм-каналов для нативных размещений
Data Science ODS — это Telegam канал в категории «Интернет технологии», который предлагает эффективные форматы для размещения рекламных постов в Телеграмме. Количество подписчиков канала в 44.6K и качественный контент помогают брендам привлекать внимание аудитории и увеличивать охват. Рейтинг канала составляет 6.4, количество отзывов – 0, со средней оценкой 0.0.
Вы можете запустить рекламную кампанию через сервис Telega.in, выбрав удобный формат размещения. Платформа обеспечивает прозрачные условия сотрудничества и предоставляет детальную аналитику. Стоимость размещения составляет 62937.0 ₽, а за 0 выполненных заявок канал зарекомендовал себя как надежный партнер для рекламы в TG. Размещайте интеграции уже сегодня и привлекайте новых клиентов вместе с Telega.in!
Вы снова сможете добавить каналы в корзину из каталога
Комментарий