
- Главная
- Каталог
- Интернет технологии
- Больши данные AI
Статистика канала
Построена на базе Wan I2V, но расширена motion-контролем через latent trajectory guidance — можно задавать траектории движения на уровне точек и объектов.
Код, веса и MoveBench для оценки качества движения доступны публично (Apache-2.0).
🔹 Подходит для генерации анимаций,, визуализации идей и исследований в области controllable video generation.
https://huggingface.co/Ruihang/Wan-Move-14B-480P
asyncio — это фреймворк для создания сетевых компонентов с использованием корутин C++20 и событийного цикла libuv. Он упрощает взаимодействие между задачами через каналы, обеспечивая высокую производительность и простоту в использовании.
🚀 Основные моменты:
- Поддержка корутин для асинхронного программирования.
- Использует события libuv для обработки сетевых операций.
- Легкая интеграция с другими библиотеками через vcpkg.
📌 GitHub: https://github.com/Hackerl/asyncio
#cpp
Эксперты Cloud.ru разработали бесплатный курс — «Креативное мышление и AI для решения задач», который поможет освоить креативные методики и научить AI генерировать нестандартные ответы.
На курсе вы:😶🌫️ Прокачаете стратегическое мышление😶🌫️ Научитесь находить первоначальную проблему😶🌫️ Освоите ТОС и CRAFT для генерации идей😶🌫️ Поймете, как воплотить задумку в реальность
А еще: с помощью подробной инструкции создадите креативного AI-ассистента, который будет выдавать нешаблонные решения для ваших задач.
Все это в удобном для вас темпе: начните и завершите курс, когда комфортно.
Перейти к курсу
Что делают:
существующую autoregressive модель «перепрошивают» через 3-фазное обучение, сохраняя все знания, но меняя способ генерации текста.
Что это даёт:
- параллельный вывод вместо токен-за-токеном
- выше скорость и эффективность
- лучшее качество на больших масштабах
Результаты:
- LLaDA2.0-mini — 16B
- LLaDA2.0-flash — 100B
Обе модели превосходят предыдущее поколение по качеству и производительности.
Почему это важно:
это шаг к быстрым LLM без главного узкого места autoregressive генерации.
Paper: https://github.com/inclusionAI/LLaDA2.0/blob/main/tech_report.pdf
HuggingFace: https://hf.co/collections/inclusionAI/llada-20
1. Всё начинается с веры и одержимости.
Оптимизм, уверенность и личная вовлечённость запускают любые большие дела.
2. Завершают сильные команды.
Спокойствие + срочность + долгий горизонт важнее мнений «здесь и сейчас».
3. Делай сложное и важное.
Большие идеи мотивируют сильнее, чем лёгкие задачи без смысла.
4. Стимулы — это суперсила.
Неправильные стимулы ломают даже хорошие команды.
5. Фокус решает.
Меньше ставок, но с высокой уверенностью. Удалять лишнее — навык.
6. Результат важнее процесса.
Хороший процесс не оправдывает плохой итог.
7. Люди важнее структуры.
Бюрократия не должна мешать совместной работе.
8. Нанимай медленно, но смело.
Ищи тех, кто реально делает, а не просто умных.
9. Суперзвёзды дают непропорциональный эффект.
Оценивай вклад, а не средний уровень.
10. Быстро итерируйся.
Ошибаться можно — медлить нельзя.
11. Масштаб и экспоненты меняют правила игры.
Рост и накопительный эффект создают магию.
12. Бездействие — скрытый риск.
Время идёт быстрее, чем кажется.
13. Вставай и продолжай.
Упорство решает.
14. Лучшее в работе — люди рядом с тобой.
2025 год был захватывающим годом для языковых моделей.
Они проявились как новый вид интеллекта, одновременно гораздо более умный и гораздо более глупый, чем я ожидал. Я думаю, что индустрия не реализовала хотя бы 10% их потенциала даже при нынешних возможностях.
Я одновременно верю и в то, что мы увидим быстрый и непрерывный прогресс, и в то, что впереди еще очень много работы.
Пристегнитесь.
В 2025-м стек обучения LLM дополнился новой ключевой стадией оптимизации по объективным наградам. Он заставляет модели самостоятельно находить стратегии рассуждения.
Прогресс года в том, что создание моделей стало не про увеличение размера модели, а про более длительные RLVR-прогоны.
Это также дало новый рычаг управления: "время размышления" на инференсе. Первопроходец - OpenAI o1, а переломный момент - o3.
Интеллект LLM формируется под давлением специфических оптимизаций и на выходе мы имеем резкие всплески способностей в рядом с грубыми ошибками.
Из-за этого бенчмарки теряют смысл: под них напрямую оптимизируются, что не ведёт к созданию AGI.
Это не просто интерфейс к условной модели, а сложная оркестрация работы LLM под конкретные вертикали, c управляемым контекстом, вызовами и интерфейсом.
Cursor создаёт отдельную ценностную прослойку между LLM-лабораториями и конечными пользователями.
В отличие от облачных агентов, он использует ваши данные, контекст и инструменты для ризонинга и вызова инструментов.
Его фишка - в низкой задержке, приватности и глубокой интеграции в рабочее окружение. Это сдвиг от ИИ как «сайта» к напарнику-помощнику в вашей системе.
Я думаю, OpenAI допустили ошибку, сосредоточив свои усилия по созданию агентов в облаке и управляемых из ChatGPT, вместо localhost.
В 2025 году ИИ преодолел порог, позволяющий через текстовые инструкции создавать работающие программы.
Это демократизирует программирование, позволяя непрофессионалам писать код, а экспертам - быстро прототипировать без глубокого погружения.
Код становится эфемерным, гибким и бесплатным ресурсом.
Забавно, что я придумал термин «вайб-кодинг» в этом твите с мыслями из душа, совершенно не представляя, как далеко это зайдет :)
Взаимодействие с ИИ через чат - это аналог командной строки 80-х, неудобный для человека.
Будущее за LLM GUI интерфейсом, где ИИ общается визуально (инфографика, анимации, веб-приложения).
Nano banana - ранний пример такого взаимодействия, в ней объединены генерация текста, изображений и общие знания.
Google Gemini Nano banana — одна из самых невероятных, меняющих парадигму моделей 2025 года.
@ai_machinelearning_big_data
Trace Anything предлагает инновационное представление видео в 4D с помощью полей траекторий. Модель эффективно оценивает траектории для любых видео и изображений, позволяя пользователям исследовать результаты в интерактивном 3D-формате.
🚀Основные моменты:
- Моделирует каждую пиксельную траекторию в 3D.
- Поддерживает любые видео и наборы изображений.
- Интерактивный 3D-обозреватель для визуализации результатов.
- Официальная реализация на PyTorch.
📌 GitHub: https://github.com/ByteDance-Seed/TraceAnything
#python
Руководитель Школы анализа данных Яндекса Алексей Толстиков в Machine Learning Podcast рассказал, зачем сильным ИИ-специалистам нужен мощный математический фундамент, как в образовании сочетать теорию с актуальными задачами из индустрии и почему топовые специалисты преподают в ШАДе не только ради денег. А ещё он ответил на актуальные вопросы: действительно ли LLM заменят живого ментора и нужно ли отказаться от лекций в пользу практики.
Слушать и ловить образовательные инсайты тут
@bigdatai
Nokode — это веб-сервер без приложения, который использует LLM для обработки запросов. Он демонстрирует, как можно создать CRUD-приложение без написания кода, полагаясь на AI для генерации SQL, HTML и обработки пользовательских отзывов. Несмотря на высокую стоимость и медлительность, проект показывает потенциал AI в управлении логикой приложений.
🚀Основные моменты:
- Полностью безкодовая архитектура.
- Использует LLM для генерации ответов на HTTP-запросы.
- Реализует базовые CRUD-функции.
- Высокая стоимость и медлительность обработки запросов.
- Потенциал для будущих улучшений в производительности.
📌 GitHub: https://github.com/samrolken/nokode
#javascript
Отзывы канала
всего 3 отзыва
- Добавлен: Сначала новые
- Добавлен: Сначала старые
- Оценка: По убыванию
- Оценка: По возрастанию
Каталог Телеграм-каналов для нативных размещений
Больши данные AI — это Telegam канал в категории «Интернет технологии», который предлагает эффективные форматы для размещения рекламных постов в Телеграмме. Количество подписчиков канала в 17.0K и качественный контент помогают брендам привлекать внимание аудитории и увеличивать охват. Рейтинг канала составляет 16.5, количество отзывов – 3, со средней оценкой 5.0.
Вы можете запустить рекламную кампанию через сервис Telega.in, выбрав удобный формат размещения. Платформа обеспечивает прозрачные условия сотрудничества и предоставляет детальную аналитику. Стоимость размещения составляет 7972.02 ₽, а за 60 выполненных заявок канал зарекомендовал себя как надежный партнер для рекламы в TG. Размещайте интеграции уже сегодня и привлекайте новых клиентов вместе с Telega.in!
Вы снова сможете добавить каналы в корзину из каталога
Комментарий